Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Harry Adams, ${ }^{\text {a }}{ }^{*}$ Samuel M. Hawxwell, ${ }^{\text {a }}$ Mustafa Saçmaci, ${ }^{\text {b }}$ Sevket Hakan Üngoren, ${ }^{\text {b }}$ Yunus Akçamur ${ }^{\text {b }}$ and Recep STahıngöz ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, England,
${ }^{\text {b }}$ Department of Chemistry, Yozgat Faculty of Arts and Sciences, Erciyes University, 66200Yozgat, Turkey, and ${ }^{\text {c }}$ Department of Physics, Yozgat Faculty of Arts and Sciences, Erciyes University, 66200-Yozgat, Turkey

Correspondence e-mail:
h.adams@sheffield.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.129$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4,7a-Bis(4-methoxyphenyl)-1,3,7-tris(4-methylphenyl)-2,3,5,6,7,7a-hexahydro-1H-pyrrolo[2,3-d]pyrimidine-2,5,6-trione

The structure of the title compound, $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5}$, is stabilized by intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Pyrrolo[2,3]pyrimidines are an important class of compounds that are structurally and chemically related to nucleosides and some antibiotics (Ohgi et al., 1979; Tolmann et al., 1968). The well known biological activity of these compounds has led to intensive investigation of their use as antitumor, anti-allergic, antiviral and anti-inflammatory agents (Hutzenlaub et al., 1972; Smith et al., 1972).

In the light of this, we have synthesized and characterized the title compound, (2), and have determined its structure by X-ray analysis.

Received 12 October 2005 Accepted 27 October 2005 Online 31 October 2005

(2)

Fig. 1 shows the molecular structure of (2), with the atomic numbering scheme. The six-membered non-aromatic ring (C2/ $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 5 / \mathrm{N} 2 / \mathrm{C} 6)$ has a total puckering amplitude of 0.532 (3) \AA (Cremer \& Pople, 1975) and a boat conformation $\left[\varphi=179.5(4)^{\circ}\right.$ and $\left.\theta=105.0(5)^{\circ}\right]$. The five-membered aromatic ring ($\mathrm{C} 1-\mathrm{C} 4 / \mathrm{N} 3$) and the five benzene rings ($\mathrm{C} 7-$ $\mathrm{C} 12, \mathrm{C} 13-\mathrm{C} 18, \mathrm{C} 19-\mathrm{C} 24, \mathrm{C} 25-\mathrm{C} 30$ and C31-C36) are each essentially planar, with r.m.s. deviations of $0.0296(13)$, 0.0104 (14), $\quad 0.0069$ (15), 0.0067 (15), 0.046 (16) and 0.126 (15) A, respectively. The bond lengths and angles are in agreement with reported literature values (Allen et al., 1987).

The structure is stabilized by intra- and intermolecular C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). In the crystal structure, the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds link the molecules into dimers which are stacked along the b axis (Fig. 2).

Experimental

Compound (1) was prepared from the cyclocondensation reaction that occurs between p, p^{\prime}-dimethoxydibenzoylketene and oxalyl
chloride (Hökelek et al., 2002). Compound (2) was obtained from (1) $(1.0 \mathrm{~g}, 2.96 \mathrm{mmol})$ by reaction with an excess of p-tolyl isocyanate in a 25 ml round-bottomed flask equipped with a calcium chloride tube. The mixture was heated at 338 K for 24 h . After cooling to room temperature, the residue was triturated with anhydrous diethyl ether, and the crude product was recrystallized from ethanol (yield 1.26 g , 66%; m.p. 475 K). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $v 1727$ (C3-O1), 1709 (C4-O2),

Figure 1
The molecular structure of (2), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.

Packing diagram of (2); $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.

1684 (C5-O3); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m..): $\delta 7.64-6.04$ ($\mathrm{m}, 20 \mathrm{H}, \mathrm{Ar}-$ H), $3.88,3.77\left(s, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 2.25,2.18,2.15\left(s, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m..): $\delta 178.51$ (C3-O1), 165.58 (C4-O2), 164.47 (C5-O3), 162.35-115.52 ($\mathrm{C}=\mathrm{C}$, arom. and aliph.), $81.36(\mathrm{~N} 1-\mathrm{C} 1-$ N2), 57.50 (O4-C38), 57.28 (O5-C37), 23.00, 22.94, 22.92 ($\mathrm{Ar}-$ CH_{3}). Analysis calculated for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 75.80, H 5.39, N 6.47%; found: C 76.02, H 5.69, N 6.22%.

Crystal data

$\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5}$
$M_{r}=649.72$
Triclinic, $P \overline{1}$
$a=10.1797$ (12) \AA
$b=12.5347$ (14) \AA
$c=13.6855(16) \AA$
$\alpha=107.999$ (2)
$\beta=99.985$ (2) ${ }^{\circ}$
$\gamma=90.504(2)^{\circ}$
$V=1632.0$ (3) \AA^{3}

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.968, T_{\text {max }}=0.991$
18940 measured reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.322 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K K radiation }
\end{aligned}
$$

Cell parameters from 3062
reflections
$\theta=4.7-50.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, yellow
$0.38 \times 0.21 \times 0.10 \mathrm{~mm}$

> 7331 independent reflections 4028 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.054$
> $\theta_{\max }=27.6^{\circ}$
> $h=-13 \rightarrow 13$
> $k=-16 \rightarrow 16$
> $l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.129$
$S=0.98$
7331 reflections
445 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.054 P)^{2}\right. \\
& +0.1342 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9A $\cdots \mathrm{O}^{1}{ }^{\text {i }}$	0.95	2.55	3.409 (3)	150
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 2^{\text {ii }}$	0.95	2.53	3.158 (3)	123
C18-H18A . . ${ }^{\text {3 }}$	0.95	2.58	2.927 (3)	102
$\mathrm{C} 30-\mathrm{H} 30 A \cdots \mathrm{O}$	0.95	2.55	2.928 (3)	104
$\mathrm{C} 32-\mathrm{H} 32 A \cdots \mathrm{~N} 1$	0.95	2.51	2.858 (3)	102
C39-H39C \cdots O $5^{\text {iii }}$	0.98	2.48	3.422 (3)	160
$\mathrm{C} 40-\mathrm{H} 40 \mathrm{C} \cdots \mathrm{O} 4^{\text {iv }}$	0.98	2.54	3.341 (3)	139

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z$; (iii) $x-1, y, z$; (iv)
$x+1, y, z+1$.
H atoms were positioned geometrically [0.95 (CH) and $0.98 \AA$ $\left.\left(\mathrm{CH}_{3}\right)\right]$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values of 1.2 (1.5 for methyl) times $U_{\text {eq }}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

organic papers

Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Hökelek, T., Sarıpınar, E., Yıldırım, I., Akkurt, M. \& Akçamur, Y. (2002). Acta Cryst. E58, o30-o32.
Hutzenlaub, W., Tolman, R. L. \& Robins, R. K. (1972). J. Med. Chem. 15, 879883.

Ohgi, T., Kondo, T. \& Goto, T. (1979). J. Am. Chem. Soc. 101, 3629-3633. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Smith, C. W., Sidwell, R. W., Robins, R. K. \& Tolman, R. L. (1972). J. Med. Chem. 15, 883-887.
Tolmann, R. L., Robins, R. K. \& Townsend, L. B. (1968). J. Am. Chem. Soc. 90, 524-526.

